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Preface  

This technical report relates to a previous work that explores the application of 
categorical and object-based verification methods to verify spatial forecasts 
produced by the Weather Running Estimate–Nowcast (WRE–N) of continuous 
meteorological variables that have been filtered by a single threshold. These 
methods use gridded forecasts and observations on a common grid, which enables 
the application a number of different spatial verification methods that reveal various 
aspects of model performance. This report describes the results obtained when the 
same categorical method, called “spatial categorical” in this report, was applied to 
the same data to determine the ability of the WRE–N to predict objects defined by 
multiple thresholds. Thus, portions of this report’s content originated in  
ARL-TR-7751.1 

  

                                                   
1 1 Raby JW, Cai H. Verification of spatial forecasts of continuous meteorological variables using 
categorical and object-based methods. White Sands Missile Range (NM): Army Research 
Laboratory (US); 2016 Aug. Report No.: ARL-TR-7751. 
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Executive Summary 

Spatial forecasts from Numerical Weather Prediction (NWP) models of tactically 
significant meteorological variables to support US Army operations on the 
battlefield have become an integral part of the products available for the Air Force 
Staff Weather Officer to use in providing mission planning and execution forecasts. 
These forecasts are ingested by certain Army tactical decision aids (TDAs). Such 
TDAs fuse information on the characteristic operational weather thresholds that 
potentially affect (impact) missions and performance of systems conducting the 
missions with the spatial forecast information from NWPs. The TDA generates 
spatial forecasts of these impacts for user-specified systems and/or missions and 
for the time period and location of interest.1 This report presents the results obtained 
by applying a spatial–categorical method that can verify spatial forecast fields of 
meteorological variables that have been filtered by the application of a threshold or 
category the same way as that used by the TDA. In effect, a threshold applied to a 
continuous variable field becomes a categorical forecast for which there are 
traditional and nontraditional methods for verification. This study evaluates the 
ability of the NWP model to predict multiple categories of the spatial variable and 
compares the skill of the model for the different categories.  

Traditional methods have been developed to verify the skill of NWP to predict 
categories of continuous meteorological variables. These methods apply the 
established theoretical framework for evaluating deterministic binary forecasts. 
This framework involves defining a binary event through the application of a 
category or threshold and evaluates the forecast skill by counting the numbers of 
times the event was forecast or not and observed or not in a contingency table. 
There are numerous statistics and skill scores that can be computed from the data 
collected by this method. For this study, the author obtained forecasts from the 
Army’s Weather Running Estimate–Nowcast, which is an Advanced Research 
version of the Weather Research and Forecasting Model adapted for generating 
short-range nowcasts and gridded observations produced by the National 
Oceanographic and Atmospheric Administration’s Global Systems Division using 
the Local Analysis and Prediction System. A tool developed by the National Center 
for Atmospheric Research called MET Series-Analysis was used to generate the 
skill scores and statistics at every grid point; then, generate graphical products that 
display the spatial distribution of the scores and statistics for each of 4 categories. 

                                                   
1 Johnson J. Personal communication. White Sands Missile Range (NM): Army Research 
Laboratory (US); 2017 June 17. 
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Preliminary results suggest the skill of the model when predicting objects defined 
by lower thresholds is greater than the skill for objects defined by higher thresholds. 
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1. Introduction and Background 

As computing technology has advanced, the weather-forecasting task, once the 
primary role of a human forecaster in theater, has shifted to computerized 
Numerical Weather Prediction (NWP) models. Scientists around the world have 
used the Weather Research and Forecasting model (WRF) extensively for many 
applications. In this study, the model used was the Advanced Research version of 
WRF (Skamarock et al. 2008) that we abbreviate as WRF–ARW. WRF–ARW 
includes Four-Dimensional Data Assimilation (FDDA) techniques that can be used 
to incorporate observations into the model so that forecast quality is improved 
(Stauffer and Seaman 1994; Deng et al. 2009). The US Army Research Laboratory 
(ARL) uses WRF–ARW as the core of its Weather Running Estimate–Nowcast 
(WRE–N) weather-forecasting model. 

The Army requires high-resolution weather forecasting to model atmospheric 
features with wavelengths on the order of 5 km or less; that imposes a requirement 
for NWP to operate on a model grid spacing on the order of 1 km or less in the 
finest, or most resolved, domain to resolve weather phenomena of interest to the 
Soldier in theater. The atmospheric flows of interest to the Army include 
mountain/valley breezes, sea breezes, and other flows induced by differences in 
land-surface characteristics. High-resolution NWP forecasts need to be validated 
against observations before their outputs can be used effectively by My Weather 
Impacts Decision Aid (MyWIDA), an Army-developed decision aid used to 
determine atmospheric impacts on Army and Joint systems and operations (Brandt 
et al. 2013). Weather-forecast validation has always been of interest to the civilian 
and military weather-forecasting community; see, for example, the reviews by 
Ebert et al. (2013) and Casati et al. (2008) or the books by Jolliffe and Stephenson 
(2012) or Wilks (2011). The validation of the models, especially high-resolution 
NWP, has proven to be especially difficult when addressing small temporal and 
spatial scales (NRC 2010) that characterize NWP for use in Army applications. 
Furthermore, the verification of WRE–N spatial fields of continuous 
meteorological variables that have been filtered by the application of a threshold 
has not been accomplished. 

The WRF model is maintained by the National Center for Atmospheric Research 
(NCAR), which has also developed a suite of Model Evaluation Tools (MET) 
(NCAR 2013) to evaluate WRF–ARW performance. MET was developed at 
NCAR through a grant from the US Air Force 557th Weather Wing (formerly the 
Air Force Weather Agency). NCAR is sponsored by the National Science 
Foundation. MET Series-Analysis performs spatial–categorical verification of 
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gridded model output against observations that have been analyzed and placed on 
a grid matching that of the model.  

ARL has employed MET Series-Analysis in a prior study, the results of which are 
presented by Raby and Cai (2016). They evaluated the applicability of a 
combination of a categorical and object-based technique for assessing the 1.75-km 
grid spacing WRE–N model to demonstrate the utility of combining traditional and 
nontraditional techniques for assessing the ability of the model to predict objects 
defined by application of a single threshold.  

ARL’s collaborations with the National Oceanic and Atmospheric Administration’s 
(NOAA’s) Global Systems Division (GSD) resulted in the generation of 1.75-km 
grids of observations of surface meteorological variables for the same domain as 
the WRE–N using the NOAA–GSD Local Analysis and Prediction System (LAPS).  

The WRE–N was run with and without FDDA for 5 case-study days over a  
1.75-km grid-spacing domain in Southern California over highly varied terrain and 
with a dense observational network that provided a robust data set of model output 
for analysis. Since results from a comparison of the verification skill scores for the 
FDDA runs with those run without the FDDA showed nearly identical scores (Raby 
and Cai 2016), only the model runs with FDDA were used for this study. The  
case-study days from February–March 2012 were picked to vary weather 
conditions from a strong synoptic forcing situation to a quiescent situation. (The 
weather conditions for each study day are described in Section 2.3.)  

This study employs MET Series-Analysis to generate spatial–categorical-
verification results for assessing the WRE–N at tactically significant grid spacings 
for a range of threshold values applied to forecasts of continuous meteorological 
variables. The motivation for presenting results at multiple thresholds came from a 
suggestion by a colleague who posed a question about the performance of the model 
at lower thresholds in view of lower skill when predicting objects defined by the 
highest threshold (Jameson 2016). The skill scores generated at a given threshold 
provide an assessment of the ability of the model to predict the object defined by 
the threshold similar to the way MyWIDA uses output from models such as  
WRE–N to provide spatial distributions of forecast weather impacts to Army 
missions and systems. By design and intent, Army systems and missions must be 
able to operate in all weather conditions, but there are rules that define marginal 
and unfavorable conditions in terms of numerous meteorological variables that are 
intended to serve as a general guide for decision-makers to consider before planning 
or executing an operation. For unfavorable impacts due to a single variable, 
MyWIDA typically uses a single threshold—“greater than or equal” (GE) or “less 
than or equal”—for a given variable based on the rules that define the unfavorable 
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weather impacts on systems or missions. Unfavorable conditions are usually 
associated with the most extreme condition that adversely impacts the system or 
mission.  

2. Domain and Model 

The ARL WRE–N (Dumais et al. 2004; Dumais et al. 2013) has been designed as 
a convection-allowing application of the WRF–ARW model (Skamarock et al. 
2008) with an observation-nudging FDDA option (Liu et al. 2005; Deng et al. 
2009). For this investigation, the WRE–N was configured to run over a multinest 
set of domains to produce a fine inner mesh with 1.75-km grid spacing, and it 
leveraged an external global model for cold-start initial conditions and time-
dependent lateral boundary conditions for the outermost nest. Table 1 describes the 
dimensions for the triple-nested domain. This global model for ARL development 
and testing has been the National Centers for Environmental Prediction’s Global 
Forecast System (GFS) model (EMC 2003). The WRE–N is envisioned to be a 
rapid-update cycling application of WRF–ARW with FDDA and optimally could 
refresh itself at intervals up to hourly (dependent upon the observation network) 
(Dumais et al. 2012; Dumais and Reen 2013). 

Table 1 WRE–N triple-nested domain dimensions in km 

East–West dimension North–South dimension Grid spacing 

1780 1780 15.75 
761 761 5.25 
506 506 1.75 

 
For this study, the model runs had a base time of 1200 coordinated universal time 
(UTC) and produced output for each hour from 1200 UTC to 0600 UTC of the 
following day for a total of 19 hourly model outputs, which were produced for each 
of 5 days in February and March 2012. The modeling domains are depicted in  
Fig. 1. 
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Fig. 1 Triple-nested model domains; domain center points are coincident and centered 
near San Diego, California (Google Earth 2016) 

2.1 Observations for Assimilation 

The initial conditions were constructed by starting with the GFS data as the first 
guess for an analysis using observations. Most observations were obtained from the 
Meteorological Assimilation Data Ingest System (MADIS) (NOAA 2016), except 
for the Tropospheric Airborne Meteorological Data Reporting (TAMDAR) 
(Daniels et al. 2016) observations, which were obtained from AirDat, LLC. The 
MADIS database included standard surface observations, mesonet* surface 
observations, maritime surface observations, wind-profiler measurements, 
rawinsonde soundings, and Aircraft Communications, Addressing, and Reporting 
System (ACARS) data. Use and reject lists were obtained from developers of the 
RTMA system (De Pondeca et al. 2011), and these were used to filter MADIS 
mesonet observations. This quality-assurance evaluation is especially important 
given the greater tendency of mesonet observations to be more poorly sited than 
other, more standard, surface observations. 

The Obsgrid component of WRF was used for quality control of all observations. 
This included gross-error checks, comparison of observations to a background field 
                                                   
* A network of automated meteorological observation stations. 
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(here GFS), and comparison of observations to nearby observations. We modified 
Obsgrid to allow observations such as the TAMDAR and ACARS data to be more 
effectively compared against the GFS background field. The quality-controlled 
observations were output in hourly, “little_r” formatted text files for use as  
ground-truth data for model assessment. We employed observation nudging to the 
observations from these same sources for the preforecast period of 1200–1800 UTC 
(0- through 6-h lead times), followed by 1 h ramping down of the nudging from 
1800 to 1900 UTC, during which no new observations are assimilated. The true, 
free forecast period thus begins at 1800 UTC because no observations after this 
time are assimilated.  

2.2 Parameterizations 

For the parameterization of turbulence in WRE–N, a modified version of the 
Mellor–Yamada–Janjić (MYJ) Planetary Boundary Layer (PBL) (Janjić 1994) 
scheme was used. This modification decreases the background turbulent kinetic 
energy and alters the diagnosis of the boundary-layer depth used for model output 
and data assimilation (Reen et al. 2014). The WRF single-moment, 5-class 
microphysics parameterization is used on all domains (Hong et al. 2004), while the 
Kain–Fritsch (Kain 2004) cumulus parameterization is used only on the 15.75-km 
outer domain. For radiation, the Rapid Radiative Transfer Model (RRTM) 
parameterization (Mlawer et al. 1997) is used for longwave radiation and the 
Dudhia (1989) scheme for shortwave radiation. The Noah land-surface model 
(Chen and Dudhia 2001a, 2001b) is used. Additional references and other details 
for these parameterization schemes are available from Skamarock et al. (2008). 
Table 2 lists the WRF configuration settings. 
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Table 2 WRE–N configuration 

Configuration  
WRF–ARW V3.4.1 Yes 
Obs-nudging FDDA Yes 
Multinest (15.75/5.25/1.75 km) Yes 
MADIS observations (FDDA) Yes 
TAMDAR observations (FDDA) Yes 
Ship/buoy observations (FDDA) Yes 
Filter obs (use/reject) (FDDA) Yes 
RUNWPSPLUS quality control (FDDA) Yes 
Obs-nudge rad 120,60,20 Yes 
MYJ–PBL scheme (modified) Yes 
WRF,sgl-moment, 5-class microphysics Yes 
Option 8—microphysics  Yes 
End FDDA 360 min Yes 
Kain–Fritsch Cum Param (outer domain) Yes 
RRTM long-wave rad (Mlawer) Yes 
Shortwave rad (Dudhia) Yes 
Noah land-surface model Yes 
Fix for nudge to low water vapor Yes 
Model Top 10hPa Yes 
Feedback on Yes 
Obs weighting function 4E-4 Yes 
57 vertical levels  Yes 
48-s time step Yes 

2.3 Case-Study Days 

The case-study days were selected on the basis of the prevailing synoptic weather 
conditions over the nested domains. Table 3 provides a short description of these 
conditions. 

Table 3 Synoptic conditions for the case-study days considered 

Case Dates (all 2012) Description 

1 February 07–08 Upper-level trough moved onshore, which led to widespread 
precipitation in the region. 

2 February 09–10 Quiescent weather was in place with a 500-hPa ridge centered 
over central California at 1200 UTC. 

3 February 16–17 An upper-level low located near the California–Arizona border 
with Mexico at 1200 UTC brought precipitation to that portion 
of the domain. This pattern moved south and east over the 
course of the day. 

4 March 01–02 A weak shortwave trough resulted in precipitation in northern 
California at the beginning of the period that spread to Nevada, 
then moved southward and decreased in coverage. 

5 March 05–06 Widespread high-level cloudiness due to weak upper-level low 
pressure but very limited precipitation. 
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2.4 Observations for Verification 

The LAPS gridded observation data sets produced by NOAA–GSD consisted of 12 
hourly Gridded Binary format, edition 2 (GRIB2) files of 2-m above-ground-level 
(AGL) temperature (TMP), relative humidity (RH), and dew-point temperature 
(DPT) and 10-m AGL U-component and V-component winds for the period of 
1200–2300 UTC (forecast lead times 0 through 11) on each of the 5 cases. The 
output grid used by the LAPS was 289 × 289 with 1.75-km grid spacing.  

3. Data Preparation Using MET 

The model and observational data were preprocessed into the formats required by 
MET Series-Analysis. The WRE–N model output data were converted from native 
Network Common Data Form (NetCDF) files to hourly Gridded Binary format, 
edition 1 (GRIB) files by the WRF Unified Post Processor, which destaggers the 
data onto an Arakawa-A Grid containing 288 × 288 grid points. The hourly GRIB2 
files on a 289 × 289 grid had to be remapped to the 288 × 288 grid to match that of 
the WRE–N grid. The NCAR “COPYGB” utility program was used to remap the 
observations and convert the files to GRIB (DTC 2016). The author used MET 
Series-Analysis to generate the grid-to-grid, categorical-error statistics for surface 
meteorological variables TMP and DPT in degrees Kelvin (K), RH (%), and wind 
speed in meters per second (WIND) for every grid point in the model domain to 
provide a way to see the spatial distribution of the errors. Series-Analysis computed 
the contingency-table statistics and skill scores for each forecast hour for 5 different 
thresholds (categories) at every grid point over all 12 forecast lead times and all 5 
case-study days. The thresholds were specified using the FORTRAN convention of 
“GE” to indicate greater than or equal to the given threshold value and are shown 
in Table 4.  

Table 4 Thresholds used in MET Series-Analysis 

TMP  
(K) 

DPT  
(K) 

RH  
(%) 

WIND  
(m/s) 

270 262 25 2 
275 267 40 5 
280 272 55 8 
285 277 70 11 
290 282 85 14 

 
MET Series-Analysis generates many categorical skill scores and  
contingency-table statistics. Of these, Table 5 lists those which were output 
initially.  
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Table 5 Initial Series-Analysis skill scores and contingency-table statistics 

Score/statistic Description 

BASER base rate 
FMEAN mean forecast value 
PODY hit rate 
FAR false-alarm ratio 

FBIAS frequency bias 
CSI Critical Success Index 
GSS Gilbert Skill Score 
ACC accuracy 

 
For this study, the author reduced the analysis to consider only CSI and FBIAS for 
the variables of 2-m AGL TMP and RH and 10-m AGL WIND to accomplish a 
preliminary assessment of the accuracy of WRE–N output that was filtered by 
application of multiple thresholds. Table 6 shows the variables and thresholds used 
in the analysis. The Series-Analysis output NetCDF file was ingested into the 
Unidata Integrated Data Viewer, which was used to generate graphics displaying 
the spatial distribution of the CSI and FBIAS over the WRE–N domain (Murray et 
al. 2003). 

Table 6 Analysis thresholds 

TMP  
(K) 

RH  
(%) 

WIND  
(m/s) 

290 85 11 
285 70 8 
280 55 5 
275 40 2 

4. Analysis of MET Series-Analysis Results  

The CSI and FBIAS are defined by a ratio of counts determined using a 2 × 2 
contingency table. Table 7 shows the contingency table with notation consistent 
with the formulae for the scores and statistics as implemented in the MET (NCAR 
2013). 
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Table 7 2 × 2 contingency table from the MET User’s Guide 4.1 (NCAR 2013) 

Forecast 
Observation 

Total 
o = 1 (e.g., “Yes”) o = 0 (e.g., “No”) 

F = 1 (e.g., “Yes”) n11 n10 n1. = n11 + n10 

F = 0 (e.g., “No”) n01 n00 n0. = n01 + n00 

Total n.1 = n11 + n01 n.0 = n10 + n00 T = n11 + n10 + n01 + n00 
a 2 × 2 contingency table in terms of counts. The nij values in the table represent the counts in each 

forecast-observation category, where i represents the forecast and j represents the observations. The 
“.” symbols in the Total cells represent sums across categories.  

b The counts, n11, n10, n01, and n00, are sometimes called the “hits”, “false alarms”, “misses”, and 
“correct rejections”, respectively.  

c By dividing the counts in the cells by the overall total, T, the joint proportions, p11, p10, p01, and p00 
can be computed. Note that p11 + p10 + p01 + p00 = 1. Similarly, if the counts are divided by the row 
(column) totals, conditional proportions, based on the forecasts (observations) can be computed.  

 
The CSI score (Eq. 1) is computed as described in the MET User’s Guide 4.1 
(NCAR 2013): 

 , (1) 

with CSI being the ratio of the number of times the event was correctly forecasted 
to occur to the number of times it was either forecasted or occurred. CSI ignores 
the “correct rejections” category (i.e., n00). 

The value of the CSI ranges between 0 and 1, with 1 being a perfect forecast and 0 
being a forecast with no skill.  

The FBIAS score is computed as described below in Eq. 2: 

  (2) 

with FBIAS defined as the ratio of the total number of forecasts of an event to the 
total number of observations of the event. A “good” value of frequency bias is close 
to 1; a value greater than 1 indicates the event was forecasted too frequently and a 
value less than 1 indicates the event was not forecasted frequently enough. 

4.1 Compare CSI and FBIAS for the 4 Threshold Values 

A display of the spatial distribution of the CSI for TMP for 4 different thresholds 
is shown in Fig. 2. The plot for TMP GE 290 shows the CSI score for the case with 
the highest threshold that was generated for the previous study by Raby and Cai 
(2016). Note the areas that are white in color do not have a CSI score due to 
nonoccurrences of the GE 290-K event. The other plots show how CSI changes 
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from generally lower CSI scores to higher scores as the threshold value is lowered. 
Visually, this trend appears as a transition from cooler to warmer colors with dark 
orange indicating a perfect CSI score of 1. At 275 K, the CSI over most of the 
domain is near perfect with slightly lower scores over mountainous terrain and the 
Sea of Cortez. This trend matches the expected trend as described by Jolliffe and 
Stephenson (2012). 

 

 

Fig. 2 CSI for 2-m AGL TMP for 4 thresholds 

A display of the spatial distribution of the FBIAS for TMP for 4 different thresholds 
is shown in Fig. 3.  
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Fig. 3 FBIAS for 2-m AGL TMP for 4 thresholds 

The plot for TMP GE 290 shows the FBIAS score for the case with the highest 
threshold that was generated for the previous study by Raby and Cai (2016). Note 
the areas that are white in color do not have a FBIAS score due to nonoccurrences 
of the GE 290-K event. The other plots show the same improving trend as that 
observed for CSI with decreasing bias as the threshold is lowered. Visually, this 
trend appears as a transition to the green color indicating an FBIAS score of 1 or 
no bias. Again, this trend agrees with the expected trend according to Jolliffe and 
Stephenson (2012). The WRE–N at the lowest threshold performs very well over 
almost the entire domain with almost no bias.  

A display of the spatial distribution of the CSI for RH for 4 different thresholds is 
shown in Fig. 4. 
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Fig. 4 CSI for 2-m AGL RH for 4 thresholds 

The plot for RH GE 85% shows the CSI score for the case with the highest threshold 
that was generated for the previous study by Raby and Cai (2016). Note the areas 
that are white in color do not have a CSI score due to nonoccurrences of the GE 
85% event. The other plots show how CSI increases as the threshold value is 
lowered. Visually, this trend appears as a transition from cooler to warmer colors 
with dark orange indicating a perfect CSI score of 1. At 40%, the CSI over most 
areas of the domain has improved, especially over the ocean and to a lesser extent 
over land. This trend matches the expected trend as described by Jolliffe and 
Stephenson (2012). 

A display of the spatial distribution of the FBIAS for RH for 4 different thresholds 
is shown in Fig. 5. 
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Fig. 5 FBIAS for 2-m AGL RH for 4 thresholds 

The plot for RH GE 85% shows the FBIAS score for the case with the highest 
threshold that was generated for the previous study by Raby and Cai (2016). The 
other plots show the same improving trend as that observed for CSI with decreasing 
bias as the threshold is lowered. Note the areas that are white in color do not have 
an FBIAS score due to nonoccurrences of the GE 85% event and, to a lesser extent, 
the GE 70% event. Visually, the improving trend appears as a transition to the green 
color indicating an FBIAS score of 1 or no bias. Again, this trend agrees with the 
expected trend according to Jolliffe and Stephenson (2012). The WRE–N at the 
lowest threshold performs very well over a significant portion of the entire domain 
with almost no bias. The areas where there is an overforecasting bias appear to be 
those with lower elevation over land, the Salton Sea, the Sea of Cortez, and over 
the ocean in some parts of the coastal zone. 

A display of the spatial distribution of the CSI for WIND for 4 different thresholds 
is shown in Fig. 6. 
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Fig. 6 CSI for 10-m AGL WIND for 4 thresholds 

The plot for WIND GE 11 m/s shows the CSI score for the case with the highest 
threshold that was generated for the previous study by Raby and Cai (2016). The 
other plots show how CSI increases as the threshold value is lowered. Note the 
areas that are white in color do not have an FBIAS score due to nonoccurrences of 
the GE 11-m/s event and, to a lesser extent, the GE 8-m/s event. Visually, the 
improving trend appears as a transition from cooler to warmer colors with dark 
orange indicating a perfect CSI score of 1. At 2 m/s, the CSI over most areas of the 
domain has improved, especially over the ocean and the Sea of Cortez. This trend 
matches the expected trend as described by Jolliffe and Stephenson (2012). 

A display of the spatial distribution of the FBIAS for WIND for 4 different 
thresholds is shown in Fig. 7. 
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Fig. 7 FBIAS for 10-m AGL WIND for 4 thresholds 

The plot for WIND GE 11 m/s shows the FBIAS score for the case with the highest 
threshold that was generated for the previous study by Raby and Cai (2016). The 
other plots show the same improving trend as that observed for CSI with decreasing 
bias as the threshold is lowered. Visually, this trend appears as a transition to the 
green color indicating an FBIAS score of 1 or no bias. Again, this trend agrees with 
the expected trend according to Jolliffe and Stephenson (2012). Note there are 
extensive areas of white indicating no occurrence of events defined by all 4 
thresholds. Reducing the threshold resulted in a reduction of these nonevents. At 
the GE 2-m/s threshold, the remaining white areas are due to the nonoccurrence of 
observed winds that were GE 2 m/s, resulting in the FBIAS score being undefined. 
The WRE–N at the lowest threshold performs very well over a significant portion 
of that entire domain with almost no bias. The areas where there is an 
overforecasting bias appear to be mostly over land. 

4.2 Summary of the Comparison of Scores for the 4 Threshold 
Values 

The frequency of occurrence of forecast events determined by the application of 
thresholds to a continuous variable field changes spatially over the domain, 
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affecting the CSI and FBIAS scores in a way that may give a misleading assessment 
of the model’s ability to forecast objects. Analysis of these scores for a range of 
thresholds shows the WRE–N performs as expected with better scores achieved 
using lower threshold values.  

When the thresholds are at the high end of the full range or, in some cases, the 
middle and lower segments of the range of the variable, there were areas where no 
events occurred, which limited the area where scores are calculated. Analysis of 
more categorical scores and contingency-table statistics—as well as assessment 
using object-based methods—is needed to overcome this limitation and improve 
assessments of the ability of the model to forecast objects defined using higher 
threshold values. Improved assessments of this aspect of model performance will 
lead to model improvements to enable better prediction of objects rendered using 
higher thresholds that will, in turn, translate into better MyWIDA unfavorable 
impact predictions.  

The accuracy of the model judged from the scores varies considerably over the 
domain due to a combination of terrain characteristics and mesoscale variations in 
the air-mass characteristics. This is true of scores produced for all thresholds. 
Analysis of more scores and contingency-table statistics is needed to better relate 
them to terrain and air-mass characteristics. Use of a Geographic Information 
System (GIS) may be particularly useful for more in-depth error analysis based on 
domain partitioning. The implication of this variability suggests that weather 
impacts on Army systems and missions vary considerably in space.  

The accuracy of the model at higher thresholds, judging from these results, is not 
as good as that using lower thresholds. The implication of this apparent lack of skill 
at higher thresholds is the prediction of unfavorable weather impacts generated by 
the MyWIDA TDA may not be as accurate as desired. However, for marginal 
weather impacts, which are associated with somewhat lower threshold values, the 
skill of the model may be better based on these results. Thus, it is important to 
conduct studies that use the actual system and mission thresholds to more 
accurately assess the ability of the model to predict objects that are meaningful to 
the Army. That said, use of actual thresholds will significantly reduce the number 
of locations and time periods for which the atmospheric conditions can provide data 
sets with the range of variable values that encompass actual thresholds. The impact 
of these 2 situations—each at odds with the other—has to be judged with the 
understanding that meaningful conclusions about model performance can only 
come from the analysis of large numbers of cases. So, there is a tradeoff between 
analysis of 1) data sets for fewer cases where tactically significant thresholds can 
be applied and 2) the more numerous data sets that were developed using thresholds 
defined by using the actual ranges of the variables present over the domain. The 
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former presents challenges due to lack of statistically significant numbers of cases; 
the latter presents a challenge of limited application for assessment of the ability of 
models to forecast objects using mission- and system-specific thresholds. 

5. Conclusion and Final Comments 

The author found that the CSI and FBIAS skill scores produced using a  
spatial–categorical-verification method with multiple threshold values for each of 
the studied variables improve with decreasing threshold value. The amount of 
improvement was not the same over the entire domain, however. The study found 
that the frequency of occurrence of forecast events determined by the application 
of a high threshold value to a continuous variable field varies over the domain and 
affects the CSI and FBIAS scores in a way that may give a misleading assessment 
of the model’s ability to forecast objects. Thresholds that define objects at the high 
end and, to a lesser extent, the mid- and lower portions of the range of a variable 
will produce scores over a subset of the domain because in some parts of the domain 
there were no event occurrences. This restricts the scoring to those areas where 
events occurred. As the threshold decreases, the numbers of nonevents decreases, 
allowing scores to be calculated over more of the domain. To more accurately 
assess the ability of the model to predict objects defined by high thresholds, studies 
are needed that use additional scores and statistics that are possible with the  
spatial–categorical method. Further, object-based methods provide additional 
information about the ability to predict objects. Raby and Cai (2016) recommended 
a more comprehensive approach combining several traditional and nontraditional 
methods for assessing the ability of the model to predict objects defined by 
thresholds; these numerous scores and statistics, when analyzed together, may 
reveal more information about model performance. 

Another difficulty that arises when using high threshold values was discussed by 
the author (Raby 2016). The CSI and FBIAS scores presented in this report were 
reviewed by Cai (2016), who attributed the lack of skill at high thresholds to 
possibly the reduced size of objects that are defined by the high threshold, which 
leads to increases in model displacement errors. Raby (2016) presented results from 
object analysis at multiple thresholds showing the objects defined at low thresholds 
were larger than objects defined at high thresholds. For a given model displacement 
error, the resulting CSI scores indicate lower skill when the objects are small and 
indicate higher skill when the objects are larger. To illustrate this difference in 
scores, Fig. 8 depicts large and small objects and a given displacement error. 
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Fig. 8 Object-displacement error for large and small objects 

The CSI is calculated from contingency-table statistics and is the ratio of the 
number of hits to the sum of the hits, false alarms, and misses. Figure 8 shows there 
is considerable agreement for the large objects despite the horizontal (east–west) 
displacement error. For the small objects, there is no agreement from the same 
displacement and there is the potential for more misses and less hits, especially if 
there are numerous small objects. The displacement error of small objects results 
in a significant decrease in the number of hits and increases in the number of misses, 
which serves to lower the CSI. By comparison, the same displacement error of large 
objects still results in a significant number of hits and thus decreases the number of 
misses, which serves to raise the CSI. 

To further improve assessments of the predictability of objects, Raby and Cai 
(2016) recommended a more rigorous approach that requires the generation of 
larger data sets of forecast output and gridded observations so that statistically 
significant results can be obtained. This will be important when verifying the 
modeled objects defined at higher thresholds, particularly when WRE–N model 
output is used to predict the more critical unfavorable-weather impacts on Army 
systems and missions using MyWIDA.  

Finally, to analyze and understand the complexity of the spatial variability of the 
scores revealed by this study and the previous study (Raby and Cai 2016), a GIS—
which the atmospheric sciences have not extensively used—should be exploited for 
its ability to contextualize and analyze geospatial information such as terrain 
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type/slope, land-use effects, and other spatial and temporal variables as explanatory 
metrics in model assessments (Smith et al. 2015, 2016a, 2016b). This technique has 
considerable promise of becoming an important new tool to augment other 
traditional and nontraditional tools for a comprehensive approach to model 
verification. 
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List of Symbols, Abbreviations, and Acronyms 

ACARS Aircraft Communications, Addressing, and Reporting System 

AGL  above ground level 

ARL  US Army Research Laboratory 

ARW  Advanced Research Weather Research and Forecasting model 

CSI  Critical Success Index 

DPT  dew-point temperature 

FBIAS  Frequency Bias 

FDDA  Four-Dimensional Data Assimilation 

GE  greater than or equal to 

GFS  Global Forecast System 

GIS  Geographic Information System 

GRIB  Gridded Binary format, edition 1 

GRIB2  Gridded Binary format, edition 2 

GSD  Global Systems Division 

LAPS  Local Analysis and Prediction System 

MADIS Meteorological Assimilation Data Ingest System 

MET  Model Evaluation Tools 

MYJ  Mellor–Yamada–Janjic 

MyWIDA My Weather Impacts Decision Aid 

NCAR  National Center for Atmospheric Research 

NetCDF Network Common Data Form 

NOAA  National Oceanic and Atmospheric Administration 

NWP  Numerical Weather Prediction 

PBL  Planetary Boundary Layer 

RH  relative humidity 

RRTM  Rapid Radiative Transfer Model 
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RTMA  Real-Time Mesoscale Analysis 

TAMDAR Tropospheric Airborne Meteorological Data Reporting 

TDA  Tactical Decision Aid 

TMP  temperature 

UTC  Coordinated Universal Time 

WIND  wind speed 

WRE–N Weather Running Estimate–Nowcast 

WRF  Weather Research and Forecasting 

WRF–ARW Weather Research and Forecasting, Advanced Research WRF 
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